
Nanoscale Implementation of G-Share Branch Predictor

Adithya Kommini, Wei-chung Chen

 Dept. of Electrical and Computer Engineering, University of Massachusetts, Amherst, USA

Abstract— The performance of the processor depends

on its ability to predict the conditional branches, so that it have

maximum usability of the pipelining. In this project

implementation of a G-Share branch predictor in N3ASIC is

performed. The design is based on N3ASIC, a nanofabric using

combination of crosspoint nanowire FETs and integration with

metal interconnects[1]. The usage of N3ASIC will have very good

impact on the area and the performance of the predictor when

compared to the conventional CMOS implementation. These

impacts have studied and compared in this project.

Keywords—G-Share; Branch Prediction; N3ASIC; Nanoscale;

I. INTRODUCTION

The factors that determine computer performance is the degree

to which the implementation can take advantage of
instruction-level parallelism. The most important part of

implementing the instruction level parallelism was able to

know where the conditional branches points even before they

are executed in the ALU. To do that there are many branch

prediction techniques being proposed in the literature. The

basic prediction technique was the Bimodal branch prediction

technique, which makes a prediction based on the direction the

branch went the last few times it was executed. This method

don’t use the global branch behavior in prediction, which

results in local branch prediction. To have a high efficiency of

branch prediction we uses the combined history of all recent
branches in making a prediction. This technique will be

referred to as global branch prediction. The local technique

works well for branches with simple repetitive patterns. The

global technique works particularly well when the direction

taken by sequentially executed branches is highly correlated.

In this project we tried to implement of the global branch

prediction called Gshare branch predictor. This method uses a

single shift register Global History Register (GHR), records

the direction taken by the most recent conditional branches.

II. G-SHARE BRANCH PREDICTOR

The Gshare branch predictor is implemented by using the

global history stored in the GHR, a XOR gate and a Pattern
History Table (PHT) as shown in figure.1. The GHR stored

global history was XORed with the branch address to get an

index which is used ti index the PHT. In this project the GHR

implemented was a 4 bit shift register using Latches and

Multiplexer, which shifts the global prediction bits after every

execution of a conditional branch and stores the new branch

behavior in the GHR. The GHR value was fed to a 4 bit XOR

circuit which GHR value and the branch address to get the

index of the prediction bit corresponding to that branch, which

is stored in the PHT. The PHT was implemented by using 16

9TNWRAM cells which stores the prediction bits

corresponding to the index, which in-turn depends on both the

address and the global branch history.

Fig. 1. Block Diagram G-Share Branch Predictor.

III. DESIGNING A G-SHARE BRANCH PREDICTOR

The designing of G-Share branch predictor in this project
was done to have optimal layout implementation. Different
blocks of the G-Share branch predictor was designed as
follows.

A. GHR Shift Register

The GHR shift register used in this project is a 4bit shift
register which shifts the bits by a bit when an executed branch
outcome arrives at the GHR to accommodate the new value.
The Shift register is implemented using a 2×1 multiplexer with
a select line which decides to shift the bit or not, a buffer with a
feedback which is used a latch to store the bit. The block
diagram of the GHR was shown in the figure.2. The N3ASIC
implementation of the shift register is designed as shown
figure.3. The shift register works based on the shift signal
which goes high on arrival of executed branch output from the
ALU. If there is no outcome from the ALU shift will be low
and the present bit in the latch is again given as input,
otherwise the branch outcome was stored in the first bit of the
shiftregister. The rest of the bits where the latch output from
the previous bit is given as input to the next bit structure, are
shifted by a bit and the last bit was discarded.

Fig.2. Block Diagram for single bit of Shift Register

Fig.3. Dynamic Implementation for single bit of Shift Register

Fig.4. Layout of single bit of Shift Register for N3ASIC

B. XOR Gate

The 4 – Bit XOR gate was used to calculate the index to the
PHT which is used to retrieve the prediction bit from the PHT.
The index was calculated from the GHR and the address (last
four bits) of the branch which is to be predicted. The XOR gate
was implemented using four 1 bit XOR gates which is shown
in the figure.5. This 1 bit XOR gate uses two NAND gates
which are connected in parallel to each other to form a XNOR
gate. In single precharge and evaluate cycle the XNOR
operation was done on two input bits which are obtained from
the GHR. In the next cycle an inverter is implemented on
XNOR output using another precharge and evaluate cycle
which gives an XOR operation output of the signals. The
layout of the XOR gate was shown in Figure.6, using the
nanowire design rules.

Fig.5. Dynamic Implementation of 1-bit XOR gate

Fig.6. Layout Implementation of 1-bit XOR gate

C. Decoder

The index produced by the XOR is used to access the

prediction bit from the PHT which is made of the 16 SRAM

cells. To decode the index and to point to the corresponding

SRAM we use a 4 to 16 decoder. This was implemented using
16 NOR gates like shown in the figure.7. The NOR gate was

operated for a single precharge and evaluation cycle to get the

decoded output. This decoder asserts the corresponding line

pointed by the index given by the XOR gate, which activates

the read operation for the corresponding SRAM. The layout of

the single NOR gate used in decoder is shown in

figure.8.

Fig.7. Dynamic Implementation of NOR gate.

Fig.8. Layout Implementation of NOR gate.

D. SRAM

In this project we used a 9 transistor nanowire SRAM as

shown in with additional transistor for read operation. The 9T

Nanowire RAM circuit is as shown in fig. 9

 Fig.9. Dynamic Implementation of SRAM.

 The storage element is implemented with a cross-coupled

NAND structure using two 2C-xnwFETs. Complimentary
states are stored in out and nout.

Write:

A pre-charge and evaluate transistor in each path controls the

write and memory restore operations through non-overlapping

clock signals xpre, ypre, xeva and yeva. The write operation is

performed in two cycles of pre-charge and evaluate of nodes

out and nout. To write a bit “1”, the out node is pre-charged

using xpre clock. However, the xeva signal is gated to hold the

state of out at 1. This is followed by pre-charge and evaluation

of nout. To write a 0 in out, while xeva is asserted to after pre-

charging out, yeva is gated after pre-charging nout to store a

state 1.
Read:

During read operation the bitline bl is pre-charged to VDD

using the rpre transistor. The pre-charge is released and the

read signal is asserted. Depending on the state stored in nout,

transistor with nout input is turned ON or OFF to read the bit

stored on out through the bitline.

Fig.10. Layout Implementation of SRAM.

IV. IMPLEMENATATION AND RESULTS

The simulations are done in HSPICE using the N3ASIC
design files. The corresponding CMOS implementation was
done in Synopsys design compiler. Simulation results are
shown in Fig 11,12,13. The area, power and delay calculatins
done in the HSPICE for N3ASIC and Design Compiler for
CMOS are compared in the Table.1. Observing the results we
can see that N3SIC implementation has very good overall
performance when compared to the CMOS 16nm
implementation.

Fig.11. Simulation Results of shiftregister

Fig.12. Simulation Results of SRAM

Fig.13. Simulation Results of XOR gate

TABLE I. COMPARISON BETWEEN N3ASIC AND CMOS

CONCLUSION

The nanoscale implementation of the G-Share branch

predictor was done using the N3ASIC’s. The simulation

results are observed and compared with similar technology.

The performance, area and delay characteristics of this

implementation shows an improvement of about 3X in power,

1.7X in area and worst case time delay over the CMOS

implementation of same feature size.

REFERENCES

[1] P. Panchapakeshan, et. al, “N3ASICs: Designing nanofabrics with fine-

grained CMOS integration,” in NANOARCH, 2011.

[2] M. Rahman, P. Narayanan, and C. A. Moritz, “N3asic-based nanowire

volatile RAM,” in IEEE-NANO, 2011..

[3] M. Rahman and C. A. Moritz, “Nanowire Volatile RAM as an

Alternative to SRAM,” IEEE Transactions on Nanotechnology.

[4] R. C. Bencher, H. Dai, and Y. Chen, “Gridded design rule scaling:
taking the CPU toward the 16nm node,” in Proceedings of SPIE,

SanJose, CA, USA, 2009, p. 72740G-72740G-10.

[5] Y. G. S. Snider and R. S. Williams, “Nano/CMOS architectures using a

 field-programmable nanowire interconnect,” Nanotechnology, vol.18,

 no. 3, p. 035204, Jan. 2007

[6] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989.

 N3ASIC CMOS

AREA

(Sq.µm) 2.14 3.69

Worst case

Delay(pS)
13.2 22.4

Leakage

Power(nW)
39.6 107.2

